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Natural convection in a shallow cavity 

By JERRY E. DRUMMOND 
Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA 

AND SEPPO A. KORPELA 
Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA 

(Received 11 September 1985 and in revised form 9 February 1987) 

We present numerical solutions of natural convection in a shallow enclosure heated 
from a side. As a result of hydrodynamic instability transverse cells appear in the 
flow if the Prandtl number is sufficiently small. Both conducting and insulated top 
and bottom boundaries were considered. For fluids of small Prandtl number the 
differences in the flow patterns in these two cases are slight, the strength of the 
circulation in the cells being somewhat weaker when the boundaries are insulated. 
This is a result of a more stable flow in this case, caused by the kinetic energy being 
more vigorously expended in the work against the buoyant forces. Insulated 
boundaries allow the temperature field to adjust more freely in the end regions leading 
to crowding of the isotherms there and consequently to larger heat transfer than when 
the boundaries are conducting. 

1. Introduction 
In  this article we discuss the natural convection in a shallow cavity with one 

sidewall heated and the other cooled. By shallow we mean that the aspect ratio of 
the cavity (defined as the height to width ratio) A 4 1. The third dimension is taken 
to be large, so that the flow can be assumed two-dimensional. Several authors have 
recognized that the flow in this configuration is useful for modelling a number of 
physical systems. Boyack & Kearney (1972) assumed the shallow enclosure to be a 
good approximation of the region enclosing auxiliary cooling systems for high- 
temperature gas-cooled reactors and obtained numerical solutions for the flow. Hart 
(1972) studied the stability of this flow, and related it to Hadley circulations in 
planetary atmospheres. Cormack, Leal & Imberger (19744 considered this geometry 
to be applicable in the study of dispersion of pollutants in estuaries. Hurle (1966), 
Hurle, Jakeman & Johnson (1974), and Gill (1974) were motivated to find out why 
temperature oscillations appear in this flow and whether these oscillations are the 
cause of undesirable properties in melt-grown crystals. Bejan & Rossie (1981) used 
a similar configuration to model a solar-energy storage system and to analyse the flow 
and its relationship to effective energy utilization in buildings. 

The basic flow in a shallow cavity is quite easy to visualize. The fluid rises along 
the hot wall, travels along the top boundary and descends as it rejects heat to the 
cold wall. The cold fluid then returns to its starting point, forming a recirculation 
zone that fills the entire cavity (see figure 1). Although this kind of pattern also 
appears in tall enclosures it is obvious that for shallow cavities smaller areas exist 
for heating and cooling the fluid and that the top and bottom boundaries greatly 
influence the flow. The boundary conditions appropriate for the top and bottom 
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FIQURE 1. A sketch of a shallow cavity. 

surfaces, such as insulating, highly conducting or free surface conditions, depend 
on the application. 

The papers by Cormack, Leal & Seinfeld (19743) and Imberger (1974), along with 
Cormack et al. (1974a), are important for understanding the flow in a shallow cavity. 
They give a theoretical analysis of the limit as the aspect ratio approaches zero. Their 
cavity included insulated horizontal boundaries, and in a later paper by Cormack et al. 
(1975) the work was extended to include several different conditions at the top. Using 
experimental and numerical techniques to verify the analytical results, they studied 
flows with Rayleigh numbers ranging from 7 to 2.15 x los. The Rayleigh number is 
defined in this paper as Ra = gyATH4/uaL, where g is the gravitational acceleration, 
H is the height of the cavity, and L its width; y is the coefficient of volumetric 
expansion, u the kinematic viscosity, and a the thermal diffusivity; AT is the 
temperature difference between the endwalls. For values of Rayleigh number in the 
lower end of the above range, they found that heat is transferred mainly by 
conduction so that temperature drops rather uniformly through the core of the 
cavity. In the core, which is the region away from the endwalls, the fluid flows parallel 
to the top and bottom boundaries with the result that the velocity profile there varies 
as a cubic polynomial in the vertical coordinate. As the Rayleigh number approaches 
lo6, the size of the core region decreases markedly as does the horizontal temperature 
gradient in the central part of the cavity. 

Bejan & Tien (1978) sought to describe the changes that occur as Ra is increased 
by classifying the flow into conduction, intermediate and boundary-layer regimes. 
These categories are based on the mechanism by which heat is transferred between 
the sidewalls, and are borrowed from the study of Eckert & Carlson (1961) for tall 
cavities. As the Rayleigh number increases, conduction, which dominates at low 
Rayleigh numbers, gradually diminishes and convection in the boundary layers at the 
vertical walls begins to control heat transfer. The intermediate regime is marked by 
increasing vertical stratification of the temperature in the core as Ra increases. This 
is noted by Imberger (1974) for A = 0.01 and Ra between lo4 and lo6. To calculate 
the flow in the intermediate and boundary-layer regimes, Bejan & Tien used the cubic 
velocity and quintic temperature profiles proposed by Cormack et al. (1974a) for the 
core regions and patched these to assumed solutions in the end regions. 

Other authors have also addressed some aspects of this problem. Said & Trupp 
(1979) have contributed some numerically computed Nusselt-number data for the 
low-Rayleigh-number range with A as low as 0.5. Numerical solutions have also been 
presented by Inaba et al. (1981) for enclosures with aspect ratios as low as 0.03 and 
for moderate Rayleigh numbers (3 < Ra < lo8). Shiralkar & Tien (1981) carried out 
a numerical study in a similar Ra-range but for fluids with Prandtl number as low 
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as 0.01. Sernas & Lee (1981), in addition to calculating the flow numerically, measured 
the heat transfer rates using interferometric techniques. The smallest aspect ratio in 
their experimental work was 0.1 and Ra was around lo6. Wirtz & Tseng (1979, 
1980) have concentrated on tilted cavities where A 2 0.2. 

The more recent investigations such as those of Bejan, Al-Homoud & Imberger 
(1981), Ostrach, Loka & Kumar (1980), Simpkins & Dudderar (1981), Shiralkar, 
Gadgil & Tien (1981) and Wirtz, Righi & Zirilli (1982) have dealt with large- 
Rayleigh-number flows (Ra-t lo8). In  general, they have shown that for large Ra the 
flow in the central part of the cavity has a very low velocity except along the top 
and bottom boundaries where there are wall jets. Velocity profiles look similar to 
those measured by Elder (1965) for the boundary-layer regime in the vertical slot. 
Bejan et al. have determined that these horizontal velocity peaks begin to appear 
when RdA4 > 1. 

Owing to the similarity between the flow in shallow and tall cavities, we discuss 
here also some of the studies of the latter. In the conduction-dominated regime the 
velocity is again cubic. Instability of this flow was first studied by Gershuni (1953) 
and later more accurate results were given by Rudakov (1967), Birikh et al. (1972), 
Korpela, Gozum & Baxi (1973) and Ruth (1979). Vest & Arpaci (1969), and Schinkel 
(1980) have presented experimental evidence of secondary cellular flows arising from 
the instability of the conduction regime, while such evidence has been presented for 
the boundary-layer regime by Elder (1 965), Linthorst, Schinkel & Hoogendorn 
(1981), and Seki, Fukusako & Inaba (1978). Grondin & Roux (1979), Lauriat (1980) 
and Lee & Korpela (1983) have obtained the multicellular structure using numerical 
methods. Drifting cellular flows in a vertical annular region have been observed in 
experiments by Choi & Korpela (1980) and in calculations by Lee, Korpela & Horne 
(1982). Hart (1971) has shown that for the conduction regime at low Prandtl numbers 
the disturbances causing the secondary cellular flows in the vertical slot draw their 
energy from the base flow. The instability is hydrodynamic in origin, caused by the 
shear between the upward- and downward-flowing fluid streams. As the Prandtl 
number is increased, more of the energy comes from the buoyancy field and for 
Pr > 12.7 Korpela et al. (1973) found that the mode of instability changes from one 
of multicellular flow to a travelling-wave type. Bergholz (1978) and Lauriat & 
Desrayaud (1985) have discussed the stability, energy transfer mechanism and the 
formation of multicellular flow for the transition and boundary-layer regimes in a 
vertical cavity. 

The linear stability theory of the parallel flow in a shallow cavity was first 
considered by Hart (1972) for conducting boundaries and later (Hart 1983~)  for both 
rigid insulated boundaries and when the top boundary is free. He found that the 
instabilities can set in as transverse modes (cell axes perpendicular to the base-flow 
direction) or longitudinal modes (axes parallel to the base flow). In the earlier paper 
he noted that for low Prandtl numbers the longitudinal modes are oscillatory, which 
prompted Gill (1974) to investigate whether these modes are the source of 
temperature fluctuations in metal and semiconductor melts. Recently, part of Hart’s 
results were recalculated by Roux, Bontoux & Henry (1984) and more extensive 
calculations are given by Kuo (1986) and Kuo et al. (1986). KUO’S results agree with 
the calculations of Roux et al. (1984), but not with the early work of Hart. Although 
the physical mechanisms proposed by Hart remain good, there me significant 
differences between his results and the later calculations. 

Kuo reports that for a flow in a cavity with conducting horizontal walls, stationary 
transverse modes are the most unstable for Pr < 0.14. Longitudinal oscillating modes 
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take over in the range 0.14 < Pr < 0.4, and beyond this the critical modes are 
longitudinal stationary ones. For insulated top and bottom the situation is similar, 
with the stationary transverse modes being the most unstable for Pr < 0.033, 
longitudinal oscillatory ones in the range 0.033 < Pr < 0.2, and longitudinal sta- 
tionary ones in the range 0.2 < Pr < 2. The difference brought about by the thermal 
boundary condition is that, whereas in the first case the longitudinal stationary modes 
are destabilized as the Prandtl number is increased, in the cavity with insulated top 
and bottom these modes become more stable. Beyond Pr = 2 the flow in the cavity 
with insulated horizontal walls is very stable and the instability, when it occurs, is 
a travelling-wave type. 

In  this paper we present results of numerical calculations of laminar flow in shallow 
cavities for the following range of parameters: & < A < Q, Gr < 30000, and Pr < 2.0. 
Here the Grashof number is defined as Gr = gyATH4/Lv2. These ranges permit 
analysis of the flow preceding and resulting from the onset of the transverse 
instabilities. The Gr-range has been selected such that, in general, the values 
governing the onset of longitudinal disturbances will be avoided. Since only trans- 
verse modes are considered, a two-dimensional rectangular cavity is employed, the 
horizontal boundaries being either insulated or conducting. 

2. Formulation and solution 
The configuration to be studied is seen in figure 1.  The symbols u’ and v’ 

respectively represent the dimensional velocities in the direction of x’ and y’.  The 
vertical walls are isothermal, the hot wall at the left, and the horizontal boundaries 
are either insulated or conducting. The governing equations are put into dimen- 
sionless form using the scale H for length, AT = Ti-Ti for the temperature, 
U = gyATHz/v for velocity, P / v  for time, U / H  for vorticity, and UH for the stream 
function. All temperatures are measured above that of the cold wall. Density changes 
in the fluid are considered to be important only as they affect the buoyancy, and all 
other physical properties of the fluid are taken to be constant. Viscous dissipation 
is also ignored. The equations of motion and energy, written in terms of the vorticity 
w ,  stream function Y,  and temperature T ,  now become 

The Poisson equation, (3) 

connects the stream function to vorticity. The vorticity and stream function are 
defined by the relations 

w =  ---, av  au u = -  a$ 2)=-- a+ 
ax ay  aY ’ ax ’ 

and the two Jacobians are given by 



Natural convection in a shallow cavity 547 

The above equations are subject to the following boundary conditions: 

$ = - = O  a+ atx=O,A-l ,  + = - = O  all. a t y = O , l ,  
ax aY 

T = l  a t x = O ,  T = O  a t x = A - l ,  

_ -  - 0 aT 

T = 1 -Ax 

at y = 0, 1, for insulated walls, 

for conducting walls, 

aY 
at y = 0,1,  

where A = H/L. For the limiting case of a highly conducting fluid (Pr = 0), (2) is 
dominated by the diffusion term and the temperature profile becomes a simple linear 
function of x. Equations (1) and (3) then describe the fluid motion with aT/ax = -A, 
and the rest of the thermal conditions can be dropped. 

Equations (1 )-( 3), along with the boundary conditions, were solved numerically 
using finite-difference techniques. The leap-frog method of DuFort t Frankel, as 
outlined in Roache (1972), was applied to the diffusion and time-derivative terms. 
This approach removes the diffusion restriction on the time-step. Jones (1979) has 
mentioned that the DuFort-Frankel method may result in inaccuracies for low- 
Prandtl-number fluids, but extensive testing of the technique by Drummond (1981) 
has shown that this need not be a concern in our implementation. A transient solution 
method is necessary owing to the possible presence of travelling-wave disturbances 
in the flow. 

The method of Arakawa (1966) was used to approximate the Jacobians in (1) and 
(2) by finite differences. This method incorporates important conservation properties 
and is recommended by Roache (1972) for problems that involve hydrodynamic 
instabilities. It has been used by Festa (1970), Quon (1972), Wirtz & Liu (1975), and 
Cormack et al. (19743) and it can be easily applied to explicit finite-difference 
equations. A two-point central difference was used for the buoyancy term. 

The Poisson equation for + was solved by using the direct method of Buzbee, Golub 
& Nielson (1970), which is an offshoot of the cyclic reduction algorithm of Buneman 
(1969). Boundary vorticity was updated with an equation exhibiting first-order 
accuracy, and the temperature of the insulated wall was computed using a second- 
order conduction equation. Overall, equations for the interior nodes of the finite- 
difference mesh are second-order accurate. 

The computational procedure for a single time-step was typical of that for explicit 
formulations with the temperature field, including boundary nodes, calculated first. 
This was followed by updating the vorticity and stream-function fields and finally 
the boundary values of vorticity . Computations were terminated by comparing 
vorticity fields from successive time-steps. Numerical stability was achieved by using 
the time-step limitation 

which is a modified form of the Courant condition. Here Ax and Ay are the uniform 
grid spacings and ui,, and t+, , the nodal velocities. Since a leap-frog time differencing 
was used in the main part of the calculation, a one-step explicit routine in which the 
time-step is limited by 
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was needed to start the calculations. For low values of Prandtl number this At can 
be very restrictive even when limited to the initialization routine. To speed up the 
starting process in this case, the temperature field alone was updated according to 
the At of ( 5 ) .  The w- and +-fields were not changed until the limiting time-step for 
the vorticity equation was reached, this being a factor of about Pr-’ larger than that 
of (5). When the limiting case of Pr = 0 was considered, the temperature-field 
calculation was by-passed and the Prandtl-number restriction on At did not appear. 

The computations were started either from quiescent conditions or from established 
flow fields that had been calculated with slightly different parameters. Runs with 
small Prandtl numbers were normally begun with the fluid having a constant 
horizontal temperature gradient. 

There are states for which initial conditions can influence the outcome of the flow 
pattern. These are for those aspect ratios for which a flow with n cells is about as 
likely to occur as one with n + 1 cells. For the calculations to be discussed, the initial 
conditions do not influence the steady-state results. That is, the aspect ratios were 
such that a unique flow pattern, independent of the initial conditions, emerged. 

Nusselt numbers were calculated with a conduction equation used by Lee (1981) 
which exhibits formal third-order accuracy. The calculations were carried out on an 
Amdahl470 V/6 computer using the IBM H-Extended compiler. Normal runs used 
a mesh with 21 grid points in the y-direction and 65 in the x-direction and required 
between one and two minutes of CPU time. This translates to a requirement of 
0.13-0.21 CPU-seconds for each time-step in the explicit marching sequence. 
Nusselt-number data presented in this paper are generally accurate to within 4 %, 
except for certain cases in which the Prandtl number approaches 1.0. These results 
should be accurate to within 10 %. Temperature, velocity and vorticity values are 
in all cases accurate to within 4 % . Extensive tests for convergence and accuracy were 
conducted using up to 257 grid points in the x-direction, and several comparisons 
were made with the findings of other authors in order to verify our numerical method. 
Details of these tests are presented in Drummond (1981). 

3. Results and discussion 
In this section the results of the numerical experiments conducted for the shallow 

cavity are described. The effect on the flow and thermal structure of varying the 
Grashof and Prandtl numbers is shown by contour plots of streamlines and isotherms. 
In each of the plots the hot wall of the enclosure is on the left. The influence of the 
aspect ratio is shown undistorted by changes in the horizontal scale even in the most 
shallow cavities. The influence of Grashof number is presented first; this is followed 
by a discussion of the Prandtl-number effects. A short section is included on the 
heat-transfer results. Details regarding the onset of secondary flow as well as 
comments on the aspect-ratio effects are given in the appropriate paragraphs in the 
following subsections. 

3.1. Influence of Crashof number 
In  figures 2 and 3 are shown contour plots of streamlines and isotherms for enclosures 
with conducting and insulated horizontal boundaries, respectively. In both figures, 
the aspect ratio is & and Pr = 0.05 and each series of plots is shown for varying values 
of Gr. The flow in each cell rotates clockwise. 

For fluids of small Prandtl number linear stability analysis (Hart 1972; Kuo et al. 
1986; Kuo & Korpela 1987) shows that in an infinitely shallow cavity the 
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instability that arises as Gr is increased is hydrodynamic in origin, the thermal field 
influencing matters only slightly. Thus the onset of instability is not expected to 
depend greatly on which of the two thermal conditions is imposed at the horizontal 
boundaries. Figures2 and 3 confirm this qualitatively. To be sure, the different 
temperature fields and the finite aspect ratio must influence the core flow somewhat. 
The strength of the cellular flow is seen to be weaker at a given Cr when the horizontal 
walls are insulated. For a cavity with conducting walls, an examination of the vertical 
velocity along the horizontal mid-plane shows that four cells are present at the onset 
of instability, although these are not visible in the contour plots on figure 2. At 
Gr = 10000 the two centre cells have merged and a three-cell pattern is evident. 
Further increase of 6% results in strengthening of the circulation in each cell. For the 
insulated boundaries, figure 3 shows a four-cell pattern remaining intact over the 
range of Gr considered. At Gr = 20000 the vorticity at the centre of the inner cells 
in the insulated enclosure is 17 % lower than that for the centre cell in the enclosure 
with conducting walls. That the angle of inclination of the cells with the horizontal 
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in the insulated cavity is smaller is further evidence of weaker secondary circulation. 
The reason for this weaker circulation is the greater stability of the flow with insulated 
boundaries. The stability calculations of Kuo et al. (1986, 1987) show the onset of 
instability for a flow in a cavity with conducting boundaries to appear at a lower value 
of the Grashof number than when the boundaries are insulated. We assume that 
qualitatively this also holds true when the aspect ratio is finite. It is tempting to 
appeal to a kinetic-energy balance for an explanation of why in one case the 
circulation is stronger. In doing so one implicitly assumes that for those cases for 
which the rate of production of kinetic energy is larger, the kinetic energy of the 
secondary flow field at steady state is also larger. This need not necessarily be true, 
although it is likely to be so. For the low Prandtl numbers our calculations show that 
all the kinetic energy of the secondary field is produced by the Reynolds stresses 
interacting with the mean flow; in fact, the influence of the secondary temperature 
field is to draw kinetic energy away from the disturbance velocity field. One can make 
an even stronger statement by noting that the product vT < 0 (where both v and 
T here denote variables characterizing the secondary flow) holds locally almost 
everywhere, so the fluid particles, as they flow, continuously do work against the 
buoyancy field. This effect is much more pronounced in the insulated enclosure than 
in the one with conducting top and bottom boundaries and leads to the weaker 
circulation in that case. 

The balance equation for the temperature variance from the mean gives inform- 
ation on the causes of the distortion of the temperature field. Our calculations show 
that the main agent to provide the secondary thermal field with its form at steady 
state is the term u T a / a x ,  in which the overbar denotes the base temperature. 
Indeed, its vertically integrated value, for a fluid of Pr = 0.05, is an order of 
magnitude greater than the integrated vTaT/ay term associated with the vertical 
motions. 

In  figure 4 the vorticity in the end and centre cells is plotted as a function of Grashof 
number for a fluid of Pr = 0. The aspect ratio A = is such that a stable three-cell 
pattern is present for all values of Gr. The outer cells are seen to develop gradually 
as Gr increases, having started in the turning regions at the ends of the cavity. The 
centre cell develops more suddenly at Gr x 7000. This is an indication of an imperfect 
bifurcation of the solution. 

A detailed analysis by Daniels, Blythe & Simpkins (1986) shows that for fluids of 
Pr < 0.12 the convective flow in a cavity with insulated top and bottom undergoes 
an imperfect bifurcation, but if Pr > 0.12 this does not happen. Our calculations are 
consistent with their conclusions and further evidence is shown in figure 5. Although 
the figure is for a flow in a cavity with conducting boundaries, similar behaviour is 
expected for small Prandtl numbers when the boundaries are insulated. In the figure 
are shown vertical velocities along the horizontal centreline for a flow at Gr = 8000 
in a cavity with A = &. The strength of the circulatory flow in the end cell is seen 
to diminish as the Prandtl number is increased from zero to 0.1, and at Pr = 0.2 the 
secondary flow has vanished. 

The possibility of an imperfect bifurcation was put forth by Hart (19833) in a 
numerical study. He saw, as we do, the cells to gain in strength as the end is 
approached. However, he forced the flow to be parallel away from the ends. This 
condition cannot be imposed on the cellular flow because the cells, when allowed to 
develop freely, become skewed with odd symmetry about the centre point of the 
isotherms of figures 2 and 3. In  both cases the cold fluid moving to the left in the 
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FIGURE 4. Vorticity at the centre of cellular regions for A = i, Pr = 0. 
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FIQURE 5. Variation of the vertial velocity at the horizontal centreline of the cavity with the 

distance from the hot end for CP = 8OOO and A = fr: 0, Pr = 0; A, 0.1 ; -. 0.2. 

for the flow to undergo a transition to a multicellular pattern in the core region, and 
thus accentuates the successive build-up of eddies from the ends to the centre. 

In  figure 6 we show further behaviour of the flow of a zero-Prandtl-number fluid 
for increasing Qr. The centre cells are seen to be.very weak at Qr = 7000-8000 (near 
the onset of instability) and the two centre cells move closer together and eventually 
merge near Qr = 1OOOO. As Qr increases beyond loo00 the cells become stronger and 
begin to tilt. Small circulation patterns, visible at Qr = 12000, form between the large 
established cells. Figure 7 shows a detail of the region between the cells and the 
circulation is noted to be in the same direction as in the large cells. The small eddy 
appears to be the result of shear from opposing streams and could be considered to 
be a secondary instability. These small cells then grow and eventually take their place 
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FIGURE 6. Effect of Grashof number on streamline pattern for A = & and Pr = 0. 

FIGURE 7. Detail of intercellular rotation. 

in the secondary-flow pattern as full-sized cells when GT = 20000. One can question 
whether this kind of instability actually occurs in a laboratory. It could well be that 
it is an artifice of the two-dimensional simulation. Secondary instabilities could lead 
to three-dimensional motions which our two-dimensional study cannot address. 

The spacing of the cells depends on a number of factors. First is the natural spacing 
predicted by the stability theory for an infinitely shallow cavity. Secondly, an integral 
number of cells must fit into a cavity of finite aspect ratio, and the cell spacing must 
accommodate this constraint. The third factor is the magnitude of the departure from 
the onset of instability. Fourth is the extent of the end regions and how this changes 
with both Grashof and Prandtl numbers. In  figure 8 the net result of these effects 
is shown. Three cells fit well into a cavity with A = t. By changing the aspect ratio 
to A = h there is ample room for the fourth cell and the cell spacing is on the average 
larger. The initial decrease in the cell spacing as Grashof number is increased is 
apparently related to the flow in the end regions. As Gr is increased well beyond the 
onset of instability the cell spacing keeps increasing. If this increase in spacing is large 
enough to allow new cells to fit into the pattern, then shear between the cells will 
cause those new cells to form as is shown in figure 6. For some aspect ratios small 
intercellular rotations formed but did not grow owing to lack of space. 
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An example of the temporal development of the cells is shown in figure 9. Note 
that the eddies at the ends of the cavity form first, symmetrically in response to the 
linear horizontal temperature gradient imposed as an initial condition. The cells at 
the centre of the enclosure grow more slowly and move closer together as time 
progresses until they merge sometime between t = 0.4 and 0.5 (dimensionless time). 
When steady state is reached, the cells are of uniform size and the vorticity at their 
centres is nearly the same. 

As a final observation on the effect of Grashof number, we show in figure 10 its 
influence on heat transfer. The ordinate gives the Nusselt number based on cavity 
length, for we have defined Nu = h H / k ,  where h is the heat-transfer coefficient and 
k is the thermal conductivity. As will be seen later, this form of Nusselt number allows 
better comparison of heat transfer in cavities of different aspect ratio. It is obvious 
that a larger Gr would give a larger Nu/A, but the interesting point is the effect of 
the boundary conditions. With insulated boundaries, the Nu/A value grows much 
faster than when the boundaries are conducting. The reason for this is seen from the 
isotherms of figures 2 and 3. In both cases the cold fluid moving to the left in the 
lower part of the cavity is heated by the hotter fluid, which moves to the right in 
the upper half. If the boundaries are conducting the cold fluid also receives thermal 
energy from the lower boundary. The latter mechanism is absent when the boundaries 
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FIQURE 10. Effect of Grashof number on heat transfer with A = $: A, Pr = 0.05 with conducting 
walls; 0, Pr = 0.1 with conducting walls; 0, Pr = 0.05 with insulated walls. 

are insulated and for this case the fluid is therefore colder as it enters the end region. 
This leads to crowding of the isotherms in the bottom half of the hot wall and as a 
result to a higher heat flux there. 

The local thermal field is also altered somewhat by the cells. Where the streamlines 
are crowded, and hence the flow is faster, the isotherms are distorted most. For a 
fmite Prandtl number, the finite timescale for thermal diffusion allows a faster moving 
fluid particle to move further in a unit of time before its temperature rises by a given 
amount than a slower moving fluid particle can. Thus, the isotherms are further apart 
in the regions of crowded streamlines. 

3.2. Prandtl-number eflects 
The influence of Prandtl number on the flow in a cavity with conducting boundaries 
is shown in figure 11.  In  these plots the aspect ratio is held fixed at A = $ and the 
Grashof number is likewise constant with a value Gr = 10000. One knows from the 
results of stability analysis that the flow becomes more stable to the stationary 
transverse modes as the Prandtl number increases. The analysis of the energetics of 
the flow shows that the work done by the fluid particles against the force of buoyancy 
increases with Prandtl number, causing the amplitude of the secondary convection 
to diminish and at Pr > 0.12 the multicellular flow to disappear completely. 
KUO’S (1986) analysis of the flow with insulated boundaries shows that for 
0.033 < Pr < 0.20 a longitudinal mode is the most unstable one. The competition 
between transverse and longitudinal modes in this range of Prandtl numbers is likely 
to lead to three-dimensional flows, invalidating two-dimensional calculations. 

For Pr > 0.5 thermal boundary layers have developed along the sidewalls of the 
cavity and since most of the temperature drop takes place across them, the 
temperature gradient across the core diminishes. In  figure 12 the horizontal gradient 
at the point in the centre is plotted as a function of Prandtl number. From that figure 
it is seen that for Pr 2 0.5 the temperature gradient already behaves as it does for 
large Prandtl numbers and that the conduction-dominated regime extends only up 
to this value of Prandtl number. In  figure 13 the cell spacing h is plotted as function 
of Prandtl number. The value of h decreases as Prandtl number is increased for 
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FIQURE 13. Effect of Prandtl number on the wavelength for A = Q and conducting boundaries: 
0,  Gr = 1OOOO; A, 15000. 

Pr < 0.06 for both Gr-values shown. This is observable to some extent in figure 11. 
For G =  10000, the wavelength continues to decrease with increasing Pr, but 
figure 14 shows that the centre cell in the original three-cell pattern disappears at 
Gr = 15000, a casuality of the end regions becoming larger at the larger values of 
Pr. The wavelength of the two remaining cells again begins to decrease as Pr increases. 
The contribution of the end regions to reducing the cell spacing is seen even more 
clearly from figure 15, which corresponds to the conditions A = fr  and Gr = 15000. 
Other qualitative features are the same as before except that there are now five cells 
in the flow and this number remains the same for all values of Pr considered. 

,For flows in cavities with conducting boundaries, Hart (1972) found transverse 
travelling modes to be the most dangerous whenever Pr > 0.05. We have not been 
able to produce flows that correspond to his theory and recent reworking of the 
stability calculations for an infinitely shallow cavity by Kuo et al. (1986), carried to 
high accuracy, leads us to believe that the travelling-wave mode does not set in until 
Pr > 1.5 when 15% = 15000. The stability analysis is not entirely conclusive in this 
case because the finiteness of the aspect ratio causes the velocity and temperature 
profiles to deviate from the analytical ones used in the stability calculations, and this 
would contribute to inaccuracies in the determination of numerical values for the 
parameters that characterize neutral states. For conducting boundaries Hart’s 
velocity and temperature profiles, adjusted to our scaling, are 

Ra A 
24 

T = I - A ~ + - ( S ~ ~ - & ~ + ~ ~ - ~ Y ) .  (7) 



Natural convection in a shallow cavity 557 

FIGURE 14. Effect of Prandtl number on stream pattern for A = i, 
Gr = 15000 and conducting walls. 

0.025 

k 1 3  0 0 0 0 0.05 

FIGURE 15. Effect of Prandtl number on stream pattern for A = &, 
Gr = 15000 and conducting walls. 

These are compared to the numerical solutions at the vertical mid-plane of the cavity 
in figure 16. The results are for A = i, Pr = 0.1 and Gr = 10000. One can see that 
the agreement is excellent. This set of parameters corresponds to a flow in which 
stationary cells are nearly damped out owing to the large value of the Prandtl 
number, but the same good agreement was observed at Gr-values near the critical 
point. It is not surprising then that the stationary transverse cells appear at very 
nearly the same value of Gr in the present study as that predicted by linear stability 
theory. It should be mentioned that in the case of insulated boundaries the profiles 
used by Hart (1972, 19833) deviate substantially from our numerical results for the 
parameters of figure 16, although they were in good agreement near the critical Gr. 
On the other hand the profiles proposed by Cormack et al. (19746) and revised by Bejan 
& Tien (1978) were close to our numerical results in the insulated cavity for all 
parameter values studied. 

As the Prandtl number is increased further, the base profiles begin to sharply 
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FIGURE 16. (a) Temperature and (b)  velocity data at the cavity mid-point for A = 4, Pr = 0.1, 
Gr = IOOOO and conducting boundaries: 0 ,  computed data; -, profile used by Hart (1972). 

deviate from the computed results as seen in figure 17 for A = A, Pr = 1.0, and 
Gr = 100oO. The nature of the deviation suggests that the finite aspect ratio tends 
to stabilize the flow. The velocities for A = fr are also plotted and these are closer to 
the analytical expression of Hart. 

By decreasing the aspect ratio further a closer match is achieved. Figure 18 shows 
the analytical profiles to coincide with the numerical data for air at  & = 6500 and 
A = &. The curves are still reasonably close to the data when @r is increased to 11 500. 
Since 6500 is fairly close to the critical value of Grashof number calculated by Hart, 
we can conclude that stability analysis with these profiles ought to give reliable values 
for the critical states. This reinforces our observations that the lack of travelling 
waves in this cavity is not the result of the distortion of the base profiles by the end 
effects, and that the travelling modes are in fact damped for these values of 
parameters. This is consistent with the stability calculations of Kuo et al. (1986). 
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FIQURE 17. (a) Temperature and (a) velocity data at the cavity mid-point for Pr = 1.0, Qr = loo00 
and conducting boundaries: 0,  computed data for A = &; A, computed data for A = h; -, 
profile used by Hart (1972) for all aspect ratios. 

3.3. Heat-transfer results 

In  figure 19 is shown a portion of the heat-transfer data computed for the low- 
aspect-ratio enclosures. For purposes of comparison the Nusselt number based on 
cavity length, Nu/A, is plotted against Ra. The dotted and solid lines represent the 
correlations of Bejan & Tien (1978) for the conduction and intermediate regimes in 
a cavity with insulated horizontal boundaries and A = &. The equations for these 
two curves are, respectively, 

- l+- 
Nu 
A 3621880 Ra2' 
-- 

where s = -0.386. Equation (9) is constructed in such a way that the two curves 
coincide at low values of Ra, as they should. 
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FIQURE 18. (a)  Temperature and ( b )  velocity data at the cavity midpoint for A = &i, Pr = 0.71, 
and conducting boundaries: 0 ,  computed data for Gr = 6500; 0, computed data for Gr = 11  500; 
-, profile used by Hart (1972) for velocity at all Cr and temperature at Gr = 6500; ---- , Hart's 
temperature profile at Gr = 1 1  500. 

FIGURE 19. Variation of Nusselt number with Rayleigh number: 0, insulated walls, A = &; 
A, conducting walls, A = k, A, I$, f5; 0 ,  conducting walls, A = !. 
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Our numerical results for the insulated cavity with A = & are seen to fall very close 
to the plot of (9). Data for the conducting-wall cavity fall substantially below either 
curve. In this case the data include values for aspect ratios ranging from & to Q. Two 
points for A = show that aspect ratio affects the results somewhat, although this 
cannot be discerned from the bulk of the data for the conducting case. That larger 
aspect ratios yield lower N u / A  values was also shown by Bejan & Tien for the 
insulated cavity. 

Since multicellular flow is absent for most of the data represented in this figure, 
the role of the cellular structure on the overall heat transfer is not apparent from 
these results. The effect of the cells would be to decrease the heat transfer because 
they mix momentum and temperature between the two oppositely flowing streams 
and thereby reduce the flow rate in each stream for a fixed driving potential. That 
the data are seen to fall below the curve for the lower values of Rayleigh number 
is consistent with this observation. 

As shown in figures 10 and 19, heat transfer is increased by the presence of insulated 
walls which enhance thermal stratification. This causes the Nusselt number in this 
case to increase more rapidly with Gr than when the boundaries are conducting. 

4. Conclusions 
A detailed numerical study of the secondary flow in a shallow cavity has been 

carried out. For low-Prandtl-number fluids, secondary flow is seen to appear near 
Gr = 7000 in the form of stationary transverse cells. The critical Grashof number does 
not depend significantly on whether the horizontal boundaries are conducting or 
insulated for the reason that the instability arises from the shear and not from the 
buoyancy field. When Pr > 0.01 the cells in the insulated cavity are noticeably 
weaker than those for the conducting case. The difference is the result of the greater 
tendency for the buoyant field to draw kinetic energy from the base flow when the 
cavity has insulated horizontal boundaries, thus leading to a more stable flow. 

The gradual onset of secondary cells for low-Prandtl-number fluids and a critical 
Grashof number lower than the Gr = 8000 predicted by linear stability theory suggest 
that the onset of secondary flow is the result of an imperfect bifurcation caused by 
the finite aspect ratio. This agrees with the analysis of Daniels et al. (1986), who 
determined that the solution bifurcates imperfectly for fluids with Pr < 0.12 in 
cavities with insulated horizontal walls. Our work shows evidence of this also for a 
flow in a cavity with conducting walls, and that as Prandtl number is increased 
beyond 0.12 the influence of the ends in causing a multicellular flow has disappeared. 
For these Prandtl numbers, although the cells at  the ends start to form at slightly 
lower Gr than those closer to the centre and are stronger near the critical Grashof 
number, the interior cells seem to form independently and not as a sequential build-up 
from the ends toward the centre as Gr is increased. 

Spacing of the cells in the cavity has been shown to depend on Gr, Pr and A. Cases 
were found for which new cells form and grow between existing cells as the space 
permits, the rotation dictated by the shear of the main stream. Other cases show cells 
merging or splitting as the spacing allows. The effect of increasing Pr is to stabilize 
the flow so that for Pr > 0.12 with A = Q and & no secondary motions were found 
for the cases considered. 

The heat transfer across an insulated cavity was found to be larger, at the same 
value of Rayleigh number, than in the cavity constructed from a material of large 
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conductivity. The values calculated were also shown to match the results of Bejan 
& Tien (1978) for the insulated cavity. 
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